
HDHomeRun Development Guide
(20110518)

HDHomeRun Software release 20100213 contains enhancements and improvements used in
this guide.

The latest HDHomeRun drivers, code, and firmware can be found on the Silicondust website:
http://www.silicondust.com/downloads

http://www.silicondust.com/wiki/downloads

I. Scripting - HDHomeRun Config
The HDHomeRun can be scripted using the hdhomerun_config command line utility.

This utility is cross-platform:

● Windows, Linux, Mac, *BSD, Solaris.

● 32-bit or 64-bit operating systems.

● Big-endian and little-endian CPUs.

● PC or embedded platforms.

Compiling hdhomerun_config

Windows (pre-compiled):
Download and install the HDHomeRun software for Windows. The hdhomerun_config.exe
executable can be found in the program directory - default C:\Program
Files\Silicondust\HDHomeRun.

Windows (MSVC++):
Download and extract the libhdhomerun archive. Create a new empty project and include all
the .c and .h files. From the project properties page under C/C++ advanced, change the Compile
As type to C, click apply and then change it back to C++ -- this is a workaround for a bug in
MSVC++. Under the Linker input, add Ws2_32.lib and iphlpapi.lib as Additional Dependencies.

Compile.

Cygwin/Linux/Mac/*BSD:
Download and extract the libhdhomerun archive.

Run "make"

Using hdhomerun_config
The list of supported commands can be obtained by running hdhomerun_config without any
parameters:
 hdhomerun_config discover
 hdhomerun_config <id> get help
 hdhomerun_config <id> get <item>
 hdhomerun_config <id> set <item> <value>
 hdhomerun_config <id> scan <tuner> [<filename>]
 hdhomerun_config <id> save <tuner> <filename>
 hdhomerun_config <id> upgrade <filename>

Discover the HDHomeRun devices on the network:
The discover command will find HDHomeRun devices that are on the same subnet as the host:
 hdhomerun_config discover

Sending commands to a specific HDHomeRun:
The “<id>” shown above represents a unique identifier for a HDHomeRun device, this can be
either Device ID, or IP address:
 hdhomerun_config <device id> get help
 hdhomerun_config <ip address> get help

To address by Device ID the HDHomeRun must be on the same subnet as the host.

A Device ID of FFFFFFFF can be used as a wild card for the first HDHomeRun device found on the
network. Do not use this syntax if there are multiple HDHomeRun devices on the network, as the
device used will be random based on discovery order, which may change between commands.

Query the list of options supported by a HDHomeRun device:
The get/set options supported by a specific HDHomeRun device can be queried using the get help
command:
 hdhomerun_config <id> get help

Example output:
Supported configuration options:
 /tuner<n>/channel <modulation>:<freq|ch> Get/set modulation and frequency
 /tuner<n>/channelmap <channel map> Get/set channel to frequency map
 /tuner<n>/filter 0x<nnnn>-0x<nnnn> [...] Get/set PID filter
 /tuner<n>/program <program number> Get/set MPEG program filter
 /tuner<n>/target <ip>:<port> Get/set target IP for tuner
 /tuner<n>/status Display status of tuner
 /tuner<n>/streaminfo Display stream info
 /tuner<n>/debug Display debug info for tuner
 /tuner<n>/lockkey Set/clear tuner lock
 /ir/target <ip>:<port> Get/set target IP for IR
 /lineup/location <countrycode>:<postcode> Get/Set location for lineup
 /lineup/location disabled Disable lineup server connection
 /sys/model Display model name
 /sys/features Display supported features
 /sys/version Display firmware version
 /sys/copyright Display firmware copyright
 /sys/debug Display debug info

Channelmap:
The channelmap is used to configure the auto-modulation detection and channel scan. This should
be configured correctly for each tuner.

The channelmap configuration is stored in non-volatile memory so only needs to be set once.
format: hdhomerun_config <device id> get /tuner<n>/channelmap
format: hdhomerun_config <device id> set /tuner<n>/channelmap <channelmap>
eg: hdhomerun_config FFFFFFFF get /tuner0/channelmap
eg: hdhomerun_config FFFFFFFF set /tuner0/channelmap us-bcast

Channel maps supported by HDHR-US hardware:

Name Description Location
us-bcast Digital Antenna (ATSC). US, Canada

us-cable Digital Cable - Normal frequency layout. US, Canada

us-hrc Digital Cable - HRC frequency layout. US, Canada

us-irc Digital Cable - IRC frequency layout. US, Canada

Channel maps supported by HDHR-EU hardware:

Name Description Location
au-bcast Digital Antenna (Australia). Australia

au-cable Digital Cable (Australia). Australia

eu-bcast Digital Antenna (Europe). Europe, New Zealand

eu-cable Digital Cable (Europe). Europe, New Zealand

tw-bcast Digital Antenna (Taiwan). Taiwan

tw-cable Digital Cable (Taiwan). Taiwan

Channel scan:
To run a channel scan:
format: hdhomerun_config <device id> scan /tuner<n> [<log filename>]
eg: hdhomerun_config FFFFFFFF scan /tuner0 scan0.log

This command will scan all channels on the selected channelmap plus any additional channelmaps
associated with the selected channelmap. All standard modulation types for the selected
channelmap are tested.

When a digital channel is found it will identify the programs on the channel.

The log filename is optional; if included it will log to the given filename.

Tuning a physical channel:
To set a channel use the set channel command:
format: hdhomerun_config <id> set /tuner<n>/channel <modulation>:<frequency>
format: hdhomerun_config <id> set /tuner<n>/channel <modulation>:<channel>
eg: hdhomerun_config FFFFFFFF set /tuner0/channel auto:651000000
eg: hdhomerun_config FFFFFFFF set /tuner0/channel auto:60

Supported modulation types can be queried with the get sys-features command:

 hdhomerun_config <id> get /sys/features

To stop the tuner set the channel to none:
format: hdhomerun_config <id> set /tuner<n>/channel none
eg: hdhomerun_config FFFFFFFF set /tuner0/channel none

Checking the signal strength:
The basic signal information can be obtained by using the get status command:
format: hdhomerun_config <device id> get /tuner<n>/status
eg: hdhomerun_config FFFFFFFF get /tuner0/status

Example output:
ch=qam:33 lock=qam256 ss=83 snq=90 seq=100 bps=38807712 pps=0

● ch = channel requested

● lock = actual modulation detected

● ss = signal strength. 80% is approximately -12dBmV.

● snq = signal to noise quality (based on analog signal to noise ratio).

● seq = symbol error quality (number of uncorrectable digital errors detected).

● bps = raw channel bits per second.

● pps = packets per second sent through the network.

More advanced information can be obtained by using the get debug command:
format: hdhomerun_config <device id> get /tuner<n>/debug
eg: hdhomerun_config FFFFFFFF get /tuner0/debug

Example output:
tun: ch=qam:33 lock=qam256 ss=84 snq=88 seq=100 dbg=22081-6930
dev: resync=0 overflow=0
ts: bps=38809216 ut=94 te=0 miss=0 crc=0
flt: bps=38809216
net: pps=0 err=0 stop=0

Each line contains a prefix to indicate the type of data, followed by the values.

● tun = tuner status

○ see above section

● dev = device status

● ts = transport stream

○ bps = bits per second

○ ut = utilization percentage (100% is filled to capacity)

○ te = transport error counter (uncorrectable reception error)

○ miss = missed packet counter (jump in sequence numbers)

○ crc = crc error counter

● flt = results after pid filtering

○ bps = bits per second

● net = network status

○ pps = packets per second

○ err = packets or TS frames dropped before transmission.

○ stop = reason for stopping the stream

The counters are reset to zero upon a channel change, but may indicate a small number of errors
caused before the tuner locks on the channel. As a result, diagnostics should be based on the
change in values over time, and not the initial values.

Detecting the programs on a physical channel:
The HDHomeRun will detect the programs (sub-channels). Use the get streaminfo command to
query the detected programs:
format: hdhomerun_config <id> get /tuner<n>/streaminfo
eg: hdhomerun_config FFFFFFFF get /tuner0/channel streaminfo

The output format is:
<program number>: <virtual major>.<virtual minor> [<name>] [(<flags>)]

Example output:
3: 20.1 KBWB-HD
4: 20.4 AZTECA

Digital cable does not always provide the channel name or virtual channel number:
1: 0
2: 0 (encrypted)
3: 0 (control)

It may take several seconds after setting the channel for the stream information to be fully
populated (depending on how long the channel takes to lock and how often the stream
information is sent by the broadcaster/cable provider).

Filtering by program (sub-channel):
The HDHomeRun supports automatic PID filtering by program number:
format: hdhomerun_config <id> set /tuner<n>/program <program number>
eg: hdhomerun_config FFFFFFFF set /tuner0/program 3

When filtering by program the PAT and PMT tables are generated by the HDHomeRun. The result
is a valid single-program transport stream.

The program filter is cleared when a set channel or a set filter command is received.

Advanced: By default the PAT and PMT are generated. To also generate a ATSC-style TVCT use:
hdhomerun_config <id> set /tuner<n>/program "<program number>
tvct_from_pmt=<virtual major>.<virtual minor>(<name>)"

eg:
hdhomerun_config <id> set /tuner0/program "3 tvct_from_pmt=11.2(TEST)"

Filtering by PID:
The HDHomeRun supports arbitrary hardware PID filtering:
format: hdhomerun_config <id> set /tuner<n>/filter <filter>
eg: hdhomerun_config FFFFFFFF set /tuner0/filter "0x0000-0x1FFF"
 hdhomerun_config FFFFFFFF set /tuner0/filter "0x0000 0x0030-0x0033 0x1FFB"

When filtering by PID the stream is filtered but otherwise unmodified.

The filter is cleared to pass-all (0x0000-0x1FFF) when a set channel command is received.

Saving a stream:
The hdhomerun_config command can be used to automate the process of saving to the local
filesystem:
format: hdhomerun_config <id> save /tuner<n> <filename>
eg: hdhomerun_config FFFFFFFF save /tuner0 capture.ts

While saving the stream, a single period “.” will be displayed every second. Additionally, as of the
20080609 release, the hdhomerun_config will detect reception and network errors, replacing the
“.” with an alternative character to indicate the problem.

Example output:
............n...............................n..........ts..........
-- Video statistics --
23323 packets recieved, 2 network errors, 1 transport errors, 1 sequence errors

Advanced: A filename of “null” indicates no file should be created, allowing the use of the save
command as a diagnostic tool.

Advanced: “-” may be used as a filename to indicate standard output, allowing the save
command to be used as a pipe on supported platforms.
eg: hdhomerun_config FFFFFFFF save /tuner0 - | vlc -

Streaming to a target machine:
Set the target IP address and port number using the set target command:
format: hdhomerun_config <id> set /tuner<n>/target udp://<ip>:<port>
format: hdhomerun_config <id> set /tuner<n>/target rtp://<ip>:<port>
eg: hdhomerun_config FFFFFFFF set /tuner0/target udp://192.168.1.100:5000
eg: hdhomerun_config FFFFFFFF set /tuner0/target rtp://192.168.1.100:5000

The target machine must be listening on the given UDP port. The HDHomeRun will automatically
clear the target if a ICMP port unreachable message is received.

A global broadcast (255.255.255.255) or subnet broadcast can be specified however care must be
taken to ensure that the broadcast traffic will not cause problems with other devices on the
network. If the local network is bridged to a wireless network then the AP will typically transmit at
a low broadcast speed saturating the wireless network.

Example: Streaming to VLC:
Run VLC: File, Open Network Stream. Select UDP/RTP. Specify port 5000.

Discover the HDHomeRun:
 hdhomerun_config discover

Run a channel scan:
 hdhomerun_config FFFFFFFF scan /tuner0 scan0.log

Set the physical channel:
 hdhomerun_config FFFFFFFF set /tuner0/channel auto:651000000

Check sub-programs:
 hdhomerun_config FFFFFFFF get /tuner0/streaminfo

Select a sub-program:
 hdhomerun_config FFFFFFFF set /tuner0/program 3

Set the target:
 hdhomerun_config FFFFFFFF set /tuner0/target <ip address of pc>:5000

II.Windows BDA Drivers
The HDHomeRun Windows software include BDA drivers (32-bit and 64-bit) for use with third
party software.

Direct Show filter:
The BDA driver consists of a single Direct Show filter. The Direct Show filter is registered both as
a "BDA Source Filter" (KSCATEGORY_BDA_NETWORK_TUNER) and as a "BDA Receiver
Component" (KSCATEGORY_BDA_RECEIVER_COMPONENT) for compatibility. Only one instance
should be used (typically KSCATEGORY_BDA_NETWORK_TUNER).

BDA Demodulator type:
Windows XP includes the older “Microsoft XXXX Network Provider” components. These “Microsoft
XXXX Network Provider” components will not work with a driver that publishes multiple
demodulator nodes.

Windows MCE 2005 and Vista support both the “Microsoft XXXX Network Provider” components
and the newer universal “Microsoft Network Provider” component. This newer universal
component supports drivers that publish multiple demodulator nodes.

Windows Media Center TV Pack (WMCTVP) and later require that a US-QAM driver publish both an
8VSB demodulator node and a QAM demodulator node. This requirement means a driver that
supports US-QAM for WMCTVP will not work with the older “Microsoft XXXX Network Provider”
components.

Many third party BDA applications continue to use the older “Microsoft XXXX Network Provider”
components for compatibility with XP. This has the advantage of supporting XP, but the
disadvantage of not being able to programatically detect if an ATSC tuner supports US-QAM.

Unfortunately the conflicting combinations mean that it is not possible for a driver to publish one
set of features. To solve this problem the HDHomeRun BDA driver will auto-detect which network
provider(s) are part of the graph and use this detection to select which demodulator nodes to
publish.

It is recommended that an application attempt to use the universal “Microsoft Network Provider”
component, and only use the “Microsoft XXX Network Provider” components if the universal
component fails to instantiate.

The following table shows the demodulator nodes published by the HDHomeRun driver based on
the network provider detected.

Hardware Network
Provider

Demodulator Node Type

ATSC Universal KSNODE_BDA_8VSB_DEMODULATOR+KSNODE_BDA_QAM_DEMODULATOR

ATSC ATSC KSNODE_BDA_8VSB_DEMODULATOR

DVBT/C Universal KSNODE_BDA_COFDM_DEMODULATOR+KSNODE_BDA_QAM_DEMODULATOR

DVBT/C DVBT KSNODE_BDA_COFDM_DEMODULATOR if user configures “Digital Antenna”.

DVBT/C DVBC KSNODE_BDA_QAM_DEMODULATOR if user configures “Digital Cable”.

Frequency Offset:
With analog TV the channel frequency is typically expressed as the video carrier frequency.

With digital TV the channel frequency is typically expressed as the digital center frequency.

The HDHomeRun hardware uses the digital center frequency to tune a channel.

For ATSC/US-QAM operation the Windows BDA system uses the NTSC video carrier frequency.
The HDHomeRun BDA driver will add 1.75MHz to the requested frequency to convert the
requested frequency into the digital center frequency needed by the hardware.

For DVBT/DVBC operation the Windows BDA system uses the digital center frequency. The BDA
driver will pass the requested frequency directly to the hardware.

Program/PID filtering:
The HDHomeRun supports hardware PID filtering. When used this reduces the network bandwidth
to that of the sub-channel being watched/recorded. This is useful for US-QAM as the HDHomeRun
will stream 80Mbps of network traffic if both tuners are streaming unfiltered.

There are three options for using the hardware PID filter support - filtering by program number,
custom PID handling, or built in Windows PID handling.

Filter by program number:
The HDHomeRun driver supports a custom IHDHomeRun_ProgramFilter interface to allow the BDA
application to select a program (sub-channel) of interest. The HDHomeRun will automatically
detect the required PIDs and set the PID filter appropriately.

The API consists of two functions - put_ProgramNumber and get_ProgramNumber.

1) Locate the KSNODE_BDA_PID_FILTER node of the HDHomeRun tuner.

2) Get the IHDHomeRun_ProgramFilter interface.

3) Set the program number (1-65535) by calling put_ProgramNumber. To pass all programs
unfiltered pass 0 as the program number. To disable program filtering and return to PID
filtering pass -1 as the program number.

Custom PID handling:
The HDHomeRun driver supports the Microsoft IMPEG2PIDMap interface for configuring the
hardware PID filter.

4) Locate the KSNODE_BDA_PID_FILTER node of the HDHomeRun tuner.

5) Get the IMPEG2PIDMap interface.

6) Call MapPID and UnmapPID APIs are needed.

For ATSC, typically the application will set he PID filter to PAT(0x0000) + PSIP(0x1FFB) on a
channel change.

Once the PAT has been detected and processed the application will enable the PMT PIDs identified
in the PAT.

Then, once the desired PMT has been detected and processed the application will enable the ES
PIDs (audio and video) identified in the PMT.

Built in Windows PID handling:
XP: The Windows BDA system supports the PID filtering APIs but does not set the PID filter.

XP + MCE 2005: The Windows BDA system supports the PID filtering APIs and will set the PID
filter automatically when using the standard Windows BDA components.

Vista: The Windows BDA system supports the PID filtering APIs and will attempt to set the PID

filter automatically. There is a bug in one of the standard Windows BDA components that prevents
this from working.

Windows 7: The Windows BDA system supports the PID filtering APIs and will set the PID filter
automatically when using the standard Windows BDA components.

HDHomeRun Setup will auto-detect if the OS has working built in PID filter support and can
configure the driver appropriately.

MCE 2005 or Windows 7 is required to test the built in Windows hardware PID filter handling. It is
important to test both changing to a new frequency and changing to a different sub-channel on
the same frequency.

Built in Windows PID handling cannot be used with normal XP (non MCE 2005) or normal Vista
(non WMCTVP).

US digital cable support:
The HDHomeRun BDA driver supports native US-QAM (ClearQAM) operation, as well as providing
a channel remap mechanism to allow US digital cable to be used with legacy ATSC-only
applications.

The modulation is auto-detected by the HDHomeRun. The only application change typically
needed to tune a native digital cable channel is to pass a cable frequency rather than an OTA
frequency.

Modulation:
US digital cable providers mostly use QAM256 modulation, however can also use QAM64 and/or
8VSB modulation.

The HDHomeRun uses the modulation type set by the application as a hint, but always auto-
detects the modulation type.

The general-purpose method for detecting if a driver supports auto-modulation detection is to
query the "IBDA_AutoDemodulate" interface. If this interface exists, call put_AutoDemodulate. If
this function returns OK then the tuner supports automatic modulation detection.

Channel map:
There are three common channel number to frequency tables used by US cable providers - Cable,
IRC, and HRC.

The Cable and IRC channel maps are almost identical. With the exception of channels 5 and 6, all
IRC channels are within 25kHz of the matching Cable channels (less than the tuning resolution of
a typical tuner).

To test all US cable channels an application must test all Cable channels, all HRC channels, and
IRC channels 5 and 6.

The HDHomeRun driver can operate in one of four modes:

Native: the application is responsible for setting the frequency. The HDHomeRun will tune the
requested frequency (plus 1.75MHz to convert the requested frequency from NTSC video carrier
frequency to digital center frequency).

AutoUSCableMap: used for legacy applications only support the Cable channel map. The
HDHomeRun driver will look up the requested frequency and compare with the channel
configuration recorded by HDHomeRun Setup. The requested frequency is converted to a HRC or
IRC frequency as needed.

AutoUSCableMapFiltered: used for legacy applications that only support the Cable channel
map. The HDHomeRun driver will look up the requested frequency and compare with the channel
configuration recorded by HDHomeRun Setup. The requested frequency is converted to a HRC or
IRC frequency as needed.

If the requested frequency is known not to contain unencrypted digital video then the channel will
be set to “none”. This will result in a zero signal strength and speed up the channel scan process.

RemapFrequency: used for legacy applications that support DVB-T but not DVB-C. The
HDHomeRun driver will look up the requested OTA frequency in the lineup file (RemapTrigger
field). If a match is found it will tune the actual frequency specified in the lineup file.

RemapProgram: used for legacy applications that support ATSC but not ClearQAM. The
HDHomeRun driver will look up the requested OTA frequency in the lineup file (RemapTrigger
field). If a match is found it will tune the frequency+program specified in the lineup file. When
operating in this mode the HDHomeRun will generate the PAT, PMT, and VCT information needed
to work with ATSC only applications. When using this mode only 68 channels can be used as there
are 68 OTA frequencies (channels 2 to 69).

Channel identification:
US Digital Cable providers typically do not sent a VCT with the stream. In cases where a VCT is
included in the stream this information often incorrect.

Silicondust maintains a lineup server that tracks unencrypted digital cable channels to match with
guide data. Silicondust provides access to this information via a web API – see following Lineup
Server chapter.

Driver configuration:
The user specifies the application they intend to use with the HDHomeRun when the run
HDHomeRun Setup. This selection sets a number of registry options to adjust the driver behavior
to suit the specified application.

For development the Application can be set to “Other: Registry”. This tells HDHomeRun Setup not
to overwrite the registry options, thus allowing the options to be set manually.

For production please contact Silicondust to have your application added to the list of user-
selectable applications in HDHomeRun Setup.

Registry:
The BDA driver configuration is per tuner, stored in:

HKEY_LOCAL_MACHINE\SOFTWARE\Silicondust\HDHomeRun\Tuners\<device id>-<tuner index>

Values are case sensitive.

Name Valid Values
Model Firmware model string from the HDHomeRun hardware.

Used by the BDA driver to configure device specific features.

SourceType “Digital Antenna”, “Digital Cable”, “Disabled”.
Used by HDHomeRun Setup to enable source specific features/options.
Used by the BDA driver to select auto-modulation group if not specified by the application.

Source Name of the source. Should be set to “Digital Antenna”, “Digital Cable”, or “Disabled”
unless there are multiple directional antennas or multiple cable systems.
Used by HDHomeRun Setup to manage channel lineups.
Used by Dynamic Tuner Allocation feature to identify interchangeable tuners.

Used by BDA driver to select the lineup XML file to use when a lineup-aware option such
as AutoUSCableMap or Remap mode is enabled.

Application Name of application known to HDHomeRun Setup, or “Other: Registry”.
Used by HDHomeRun Setup GUI to store user selection.

BDADemodulator Deprecated - not used by driver.

BDAPIDFilter “Enabled” - enable hardware PID filter support.
“Disabled” - disable hardware PID filter support.

ChannelMapping “Native”, “AutoUSCableMap”, “AutoUSCableMapFiltered”, “RemapProgram”,
“RemapFrequency” - see channel map section under US digital cable support.

III.Lineup Server
Silicondust maintains a lineup server to track and identify antenna and cable channels. The main
focus is on identifying unencrypted digital cable channels in the US.

For end-customers the lineup information is available from the Silicondust website:
http://www.silicondust.com/hdhomerun/channels

For application use the lineup information is available via a XML/HTTPS based web API.

Sub-channel tracking:

The lineup server tracks and groups sub-channels by comparing the video content using a real-
time video hash. Matching is automatic and is not dependent on the frequency or the stream
layout.

Video matching allows the lineup server to automatically match and track names from ATSC
channels, DTA-identified channels, PSIP-identified channels, and user-identified channels.

The server is currently tracking 90,000 unencrypted cable sub-channels and typically identifies
100,000 tuner-to-tuner video matches per minute.

Encrypted vs Unencrypted:

The lineup server uses I-Frame detection from HDHomeRun devices to detect unencrypted sub-
channels. This improves the reliability of reporting which sub-channels are unencrypted.

Lineup tracking:

The lineup server automatically identifies and tracks cable lineups. Each lineup is a collection of
cable head-ends with the identical unencrypted channels, excluding on-demand channels. This
information is used to locate the correct lineup for a user request for channel identification.

ATSC:

ATSC (over the air) channels are validated against a dictionary of latitude/longitude, callsign,
transport stream ID, and virtual channel numbers. The output of the dictionary is the TMS-style
callsign for matching guide data.

ATSC rebroadcast on cable:

The lineup server automatically matches over-the-air sub-channels with cable sub-channels by
matching the video content. This allows the ATSC channel name to be applied to the cable channel
without relying on user feedback. Likewise if a cable provider changes the channel layout the
ATSC-rebroadcast channels are automatically detected and named.

Comcast DTA information:

The lineup server processes Comcast DTA information to aid with channel identification.

Sub-channels identified via Comcast DTA information are automatically matched with sub-
channels on non-DTA based headends based on the video content.

User feedback:

The lineup server accepts and processes user feedback for tracking channels that cannot be
automatically identified using ATSC, DTA, or PSIP matching.

Sub-channels are automatically matched between head ends based on video content. The user
feedback is analyzed both at the local level for the specific head-end and at a wider level for all
head-ends that broadcast the specific video feed.

Service:

For application use the lineup information is available via a XML/HTTPS based web API.

http://www.silicondust.com/hdhomerun/channels

The web API is available for use with HDHomeRun tuners at no cost.

For non-HDHomeRun tuners the service is available for a nominal cost based on the number of
users. This helps cover bandwidth and operating costs.

The web API documentation follows.

Web API: Channel scan/name resolution:
In most cases a DVR application will request name resolution directly after a channel scan. This
may be due to a user initiated channel scan or may be a background task that runs a channel
scan periodically.

Request URL:

https://www.silicondust.com/hdhomerun/lineupui?Cmd=IdentifyPrograms2

Request format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LineupUIRequest>

<Vendor>{Vendor}</Vendor>
<Application>{Application}</Application>
<Command>IdentifyPrograms2</Command>
<UserID>{UserID}</UserID>
[<DeviceID>{DeviceID}</DeviceID>]
<Location>{Country code}:{Postcode}</Location>
<Program>

<Modulation>{Modulation}</Modulation>
<Frequency>{Center frequency Hz}</Frequency>
<TransportStreamID>{TSID}</TransportStreamID>
<ProgramNumber>{Program number}</ProgramNumber>
<SeenTimestamp>{YYYY-MM-DD HH:MM:SS}</SeenTimestamp>

</Program>
<Program>

<Modulation>{Modulation}</Modulation>
<Frequency>{Center frequency Hz}</Frequency>
<TransportStreamID>{TSID}</TransportStreamID>
<ProgramNumber>{Program number}</ProgramNumber>
<SeenTimestamp>{YYYY-MM-DD HH:MM:SS}</SeenTimestamp>

</Program>
</LineupUIRequest>

• Vendor: Test string to identify the application vendor. For example “Silicondust USA”.

• Application: Text string to identify the application, version, and platform. For example
“HDHomeRun Setup 20090415 (Windows)”

• Command: “IdentifyPrograms2”.

• UserID: Globally unique string to identify the user/household. Typically this will be the
user's email address or a 3 or 4 letter abbreviation of the product name followed by the
product serial number (for example “FOO:12345678”). If there are multiple computers in
the same household they should all return the same UserID.

• DeviceID: Optional field to specify the Device ID of a HDHomeRun if a HDHomeRun is
present. For example “10100000”. This field can be present multiple times for multiple
HDHomeRun devices.

• Location: Two character ISO country code followed by the postcode (colon separated). For
example “US:94086”. The ISO country code should be capitalized.

• Modulation: For US digital cable the modulation should be one of “qam256”, “qam64”, or

“8vsb” (case sensitive).

• Frequency: Digital center frequency in Hz. For example, US cable channel 100 is
“651000000”. If the NTSC video carrier frequency is used internally by the DVR application
(649250000 for channel 100) then add 1.75MHz to get the digital center frequency.

• TransportStreamID: 16-bit transport stream ID as detected from the PAT. This may be
specified as an integer (“173”) or in hex (“0x00AD”).

• ProgramNumber: 16-bit program number from the PAT (or VCT). The values of 0 and
65535 are reserved.

• SeenTimestamp: UTC time of when the channel/program was detected in “YYYY-MM-DD
HH:MM:SS” format. For a complete channel scan the timestamp for all programs can be
set to the time the channel scan was initiated.

• All detected unencrypted programs should be sent in the request. The complete set of
program information is used to detect the right head-end match.

Response format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LineupUIResponse>

<Command>IdentifyPrograms2</Command>
<Program>

<Modulation>{Modulation}</Modulation>
<Frequency>{Center frequency Hz}</Frequency>
<TransportStreamID>{TSID}</TransportStreamID>
<ProgramNumber>{Program number}</ProgramNumber>
[<GuideName>{Guide name}</GuideName>]
[<GuideNumber>{Guide number}</GuideNumber>]

</Program>
<Program>

<Modulation>{Modulation}</Modulation>
<Frequency>{Center frequency Hz}</Frequency>
<TransportStreamID>{TSID}</TransportStreamID>
<ProgramNumber>{Program number}</ProgramNumber>
[<GuideName>{Guide name}</GuideName>]
[<GuideNumber>{Guide number}</GuideNumber>]

</Program>
</LineupUIResponse>

• GuideName: UTF-8 encoded name of the program (sub-channel) matching the guide. For
US digital cable Tribune/Zap2it guide names are provided. This field will be omitted if not
known. Special purpose GuideName results:

◦ “ONDEMAND” indicates a dynamic program that should default to disabled.

• GuideNumber: “n.n” or “n” format virtual channel number. For US digital cable the virtual
channel numbers are unreliable for matching – the virtual channel number should not be
used for channel matching except as a fall-back if the returned GuideName does not exist
in the guide. This field will be omitted if not known.

Web API: Correction/feedback:
If the application provides a mechanism to manually enter or correct the name of a channel then
this information should be sent to the lineup server using the feedback API. This feedback is used
to improve the results and to avoid overwriting user corrections if the user runs another channel
scan.

Request URL:

https://www.silicondust.com/hdhomerun/lineupui?Cmd=IdentifyFeedback2

Request format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LineupUIRequest>

<Vendor>{Vendor}</Vendor>
<Application>{Application}</Application>
<Command>IdentifyFeedback2</Command>
<UserID>{UserID}</UserID>
[<DeviceID>{DeviceID}</DeviceID>]
<Location>{Country code}:{Postcode}</Location>
<Program>

<Modulation>{Modulation}</Modulation>
<Frequency>{Center frequency Hz}</Frequency>
<TransportStreamID>{TSID}</TransportStreamID>
<ProgramNumber>{Program number}</ProgramNumber>
<UserGuideName>{Guide name}</UserGuideName>
[<UserGuideNumber>{Guide number}</UserGuideNumber>]
<UserModified>{YYYY-MM-DD HH:MM:SS}</UserModified>

</Program>
<Program>

<Modulation>{Modulation}</Modulation>
<Frequency>{Center frequency Hz}</Frequency>
<TransportStreamID>{TSID}</TransportStreamID>
<ProgramNumber>{Program number}</ProgramNumber>
<UserGuideName>{Guide name}</UserGuideName>
[<UserGuideNumber>{Guide number}</UserGuideNumber>]
<UserModified>{YYYY-MM-DD HH:MM:SS}</UserModified>

</Program>
</LineupUIRequest>

• Command: “IdentifyFeedback2”.

• UserGuideName: UTF-8 encoded name of the program (sub-channel) matching the guide.

• UserGuideNumber: “n.n” or “n” format guide number for the program (sub-channel). This
field can be omitted if not known.

• UserModified: UTC time of when the user modified the guide name or the guide number of
program (sub-channel) in “YYYY-MM-DD HH:MM:SS” format.

• Only names that have been user-modified should be sent using this API.

Response format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LineupUIResponse>

<Command>IdentifyFeedback2</Command>
</LineupUIResponse>

Key technical terms of use:
• HTTPS to be used for requests.

• XML encoding to be UTF-8.

• The script or DVR application to identify itself in the request including the version.

• Requests to the lineup server to be made from the user/client application, not from a
central server.

• Support for the correction/feedback API is required if the application provides a way for the
user to edit channel names.

• Business and Technical contact information to be registered with Silicondust.

IV.Library API
The libhdhomerun library can be used for direct programmatic control of the HDHomeRun.

See “Scripting - HDHomeRun Config” for platform compatibility and information on compiling.

Discovery API
The discovery API is used to find HDHomeRun units on the network - documented in
hdhomerun_discover.h.

For repetitive background polling use hdhomerun_discover_create() and
hdhomerun_discover_find_devices().

For less frequent use the hdhomerun_discover_find_devices_custom() API provides discovery
using a single call.

Note: the Discovery API will return the list of HDHomeRun units on the network but does not
indicate the number of tuners associated with each HDHomeRun unit. This will be addressed in the
future. If this affects your application please contact support@silicondust.com.

Device API
The Device API is the primary API for controlling a HDHomeRun tuner - documented in
hdhomerun_device.h.

Create:
Call hdhomerun_device_create() or hdhomerun_device_create_from_str() to create a device
object. See hdhomerun_device.h for parameters and usage.

Typically a device object will be created for each tuner to be controlled.

Get/Set:
The get/set APIs can be used in a similar way to the get/set commands of hdhomerun_config. See
hdhomerun_device.h for the complete list of get/set functions.

For example, to set a channel call:

hdhomerun_device_create()

hdhomerun_device_set_tuner_channel()

hdhomerun_device_set_tuner_program()

Note: for Get functions that return a string the string is valid until another libhdhomerun API call.

Video stream:
Option 1: libhdhomerun video socket support:

The device-video API handles the video UDP socket, target configuration, buffering, sequence
checking, etc.

After setting the channel call hdhomerun_device_stream_start() to create the video UDP socket
and start the video service thread.

Call hdhomerun_device_stream_recv() periodically to receive the video stream.

The hdhomerun_device_stream_start/stop() APIs call hdhomerun_device_set_tuner_target()
internally as needed.

Option 2: external video socket support:

For applications with existing UDP or RTP video support use
hdhomerun_device_set_tuner_target() to set the target to the listening UDP port.

When streaming is no longer required use the same function to set the target to “none”.

Resource lock:
The resource lock API is used to prevent conflicts when there are multiple hosts on the network
controlling the same set of tuners.

Low level: use hdhomerun_device_tuner_lockkey_request() to request exclusive control of the
tuner. This function will return success (1) if the request was successful, reject (0) if the tuner is
in use by anther host, or error (-1) if a communication error occurs.

When the tuner lock is no longer required use hdhomerun_device_tuner_lockkey_release() to
release the resource lock.

The hdhomerun_device_tuner_lockkey_force() API will cause a resource lock to be released
regardless of which host owns the lock. This function should only be called if the user has been
presented with a dialog and the user has explicitly requested that the lock be overridden.

The HDHomeRun will self expire the resource lock if not streaming and no commands are received
in a 30s period. If the host application crashes without releasing the resource lock this timeout will
allow the tuner to be used again. The exception - if the tuner is streaming video and the host has
a firewall that prevents ICMP port unreachable messages the tuner will not be informed that the
video is no longer being accepted by the host. Streaming will continue and the tuner will maintain
the lock.

To avoid this situation use the Device Selector API to request the resource lock. This will auto-
detect and release dead locks - see Device Selector API section below.

Note: the detection and automatic release of dead resource locks is planned to be moved to
hdhomerun_device_tuner_lockkey_request(). If this affects your application please contact
support@silicondust.com

Device Selector API
The Device Selector API is used to automatically select and lock an available tuner from a pool of
tuners - documented in device_selector.h.

A pool is typically all tuners on the local network that have the same signal source.

Setup:
Use hdhomerun_device_selector_create() to create the selector object.

Use hdhomerun_device_selector_add_device() to add a device to the selection pool.

Tuner selection:
Start: use hdhomerun_device_selector_choose_and_lock() to find and lock an available tuner.

Stop: use hdhomerun_device_tuner_lockkey_release() to release the lock when the tuner is no
longer required.

Channel change: there are two options for handling the resource lock when changing channel:

1) Release the resource lock by calling hdhomerun_device_tuner_lockkey_release(), then call
hdhomerun_device_selector_choose_and_lock() to find and lock an available tuner.

2) Refresh the existing lock by calling hdhomerun_device_tuner_lockkey_request(). If the
application still holds the resource lock the request function will return success (1). If the lock has
been lost at some point but the tuner is available the request function will reacquire the lock and
return success (1). If the lock as been lost at some point and the tuner is now locked by another
host the request function will return busy (0). In this situation the application should call
hdhomerun_device_tuner_lockkey_release() to release the local lock state and call
hdhomerun_device_selector_choose_and_lock() to find another tuner.

V.Modulation types

ATSC
ATSC modulation 8vsb

ATSC auto-modulation auto6t
Notes:

There is only one modulation type for ATSC - auto6t is an alias for the 8vsb modulation type.

The auto6t alias was not present in early firmware versions. Using “8vsb” will avoid any issues
with older firmware.

When the modulation is not specified or “auto” is specified the behavior depends on the firmware
version. Older firmware versions will test 8vsb, qam256, and qam64 (slower). Newer firmware
versions choose the modulation based on the channel map set (faster):

us-bcast auto6t/8vsb

DVB-T
DVB-T 8MHz modulation t8qam64 t8qam16 t8qpsk

DVB-T 7MHz modulation t7qam64 t7qam16 t7qpsk

DVB-T 6MHz modulation t6qam64 t6qam16 t6qpsk

DVB-T 8MHz auto-modulation auto8t

DVB-T 7MHz auto-modulation auto7t

DVB-T 6MHz auto-modulation auto6t
Notes:

The HDHomeRun requires the channel bandwidth to be specified - if the incorrect channel
bandwidth is specified the HDHomeRun will not lock.

The current HDHomeRun models do auto-modulation detection when tuning DVB-T regardless of
which modulation type is specified (ie t8qam64, t8qam16, and t8qpsk are all aliases for auto8t).
The HDHomeRun will report the actual modulation in /tuner<n>/status. There is no performance
penalty for using auto-modulation.

When the modulation is not specified or “auto” is specified the modulation is chosen based on the
channel map:

eu-bcast auto7t (F<300MHz) auto8t (F>=300MHz)

au-bcast auto7t

tw-bcast auto6t

US-Cable
US-cable modulation qam256 qam64

US-cable auto-modulation qam auto6c
Notes:

The auto6c alias was not present in early firmware versions. Using “qam” for auto-modulation will
avoid any issues with older firmware.

When the modulation is not specified or “auto” is specified the behavior depends on the firmware

version. Older firmware versions will test 8vsb, qam256, and qam64 (slower). Newer firmware
versions choose the modulation based on the channel map set (faster):

us-cable us-hrc us-irc auto6c/qam

DVB-C
DVB-C 8MHz modulation a8qam256-xxxx a8qam128-xxxx a8qam64-xxxx

DVB-C 7MHz modulation a7qam256-xxxx a7qam128-xxxx a7qam64-xxxx

DVB-C 6MHz modulation a6qam256-xxxx a6qam128-xxxx a6qam64-xxxx

DVB-C 8MHz auto-modulation auto8c

DVB-C 7MHz auto-modulation auto7c

DVB-C 6MHz auto-modulation auto6c
Notes:

The symbol rate is specified as a 4-digit decimal number - the symbols/sec divided by 1000. For
example, 8MHz QAM256 at 6,900,000 symbols/second is specified as “a8qam256-6900”.

If the incorrect channel bandwidth is specified the HDHomeRun may lock, however the signal
performance may be impacted.

If the incorrect modulation type or symbol rate is specified the HDHomeRun will not lock.

When DVB-C auto-modulation is specified the HDHomeRun will attempt to tune following the
/sys/dvbc_modulation setting. Up to three modulation strings can be programmed (space
separated) and this information is stored in non-volatile configuration memory by the
HDHomeRun. Auto-modulation will not work until the /sys/dvbc_modulation value has been set by
the user.

The auto8c, auto7c, and auto6c modes are identical - the HDHomeRun will attempt to tune using
the modulation strings from the /sys/dvbc_modulation setting. The channel bandwidth is set
based on the modulation strings found in /sys/dvbc_modulation.

When the modulation is not specified or “auto” is specified the modulation is chosen based on the
channel map:

eu-cable auto8c/auto7c/auto6c

au-cable auto8c/auto7c/auto6c

tw-cable auto8c/auto7c/auto6c

Non-volatile configuration
The /tuner<n>/channelmap and /sys/dvbc_modualtion variables are store in non-volatile
configuration memory by the HDHomeRun.

These variables are intended to be set by the user during setup/configuration if desired.

These variables should NOT be set by the PC software on each channel tune.

	Compiling hdhomerun_config
	Using hdhomerun_config
	Direct Show filter:
	BDA Demodulator type:
	Frequency Offset:
	Program/PID filtering:
	US digital cable support:
	Driver configuration:
	Discovery API
	Device API
	Device Selector API

